PITUITARY ADENOMAS- CLINICAL, NEURO-OPTHALMIC AND RADIOLOGICAL EVALUATION

PITUITARY GLAND – AN OVERVIEW

► WEIGHS Just 600 mg

Cranio caudal dimensions 8-10mm

Upper border is usually flat or concave

EXERCISES DIRECT OR INDIRECT CONTROL ON EVERY ORGAN SYSTEM

PITUITARY GLAND – AN OVERVIEW

Sella turcica - part of body of sphenoid bone Depth- upper limit 13mm

Length- upper limit 17mm

Width – upperlimit 15 mm

volume 1100 mm3

>ADENOHYPOPHYSIS

- GLANDULAR COMPONENT
 BELIEVED TO ARISE FROM STOMODEUM
- SECRETES

GH,PRL,FSH,LH,TSH,ACTH,MSH,ENDORPHINS.

ADENOHYPOPHYSIS : DIVIDED INTO

PARS TUBERALIS

PARS INTERMEDIA

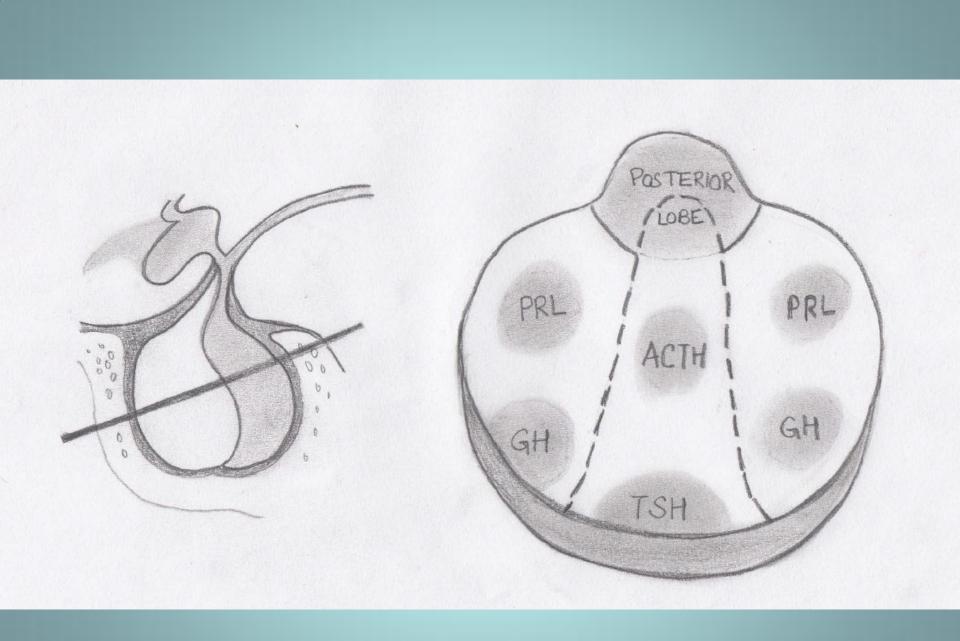
PARS DISTALIS

ADENOHYPOPHYSIS:

DELICATE ACINAR ARCHITECTURE

IN HORIZONTAL CROSS SECTION ,COMPOSED OF

- TWO LATERAL WINGS
- TRAPEZOID CENTRAL MUCOID WEDGE



SOMATOTROPHS ANTERIOR PART OF THE LATERAL WINGS

LACTOTROPHS POSTERIOR PART OF THE LATERAL WINGS

CORTICOTROPHS CENTRAL WEDGE , JUST ANTERIOR TO POSTERIOR LOBE

THYROTROPHS ANTEROMEDIAL PART OF CENTRAL WEDGE GONADOTROPHS THROUGH OUT PARS DISTALIS

NEUROHYPOPHYSIS

- CONTAINS ONLY AXONS AND FENESTRATED CAPPILARIES
 - DIVIDED INTO

- MEDIAN EMINENCE
 - INFUNDIBULAR STEM
 - NEURAL LOBE

PITUITARY TUMOURS

10-15% *OF ALL PRIMARY BRAIN TUMOURS

* kovcks et al .Tumours of pituitary gland.Atlas of tumour pathology

ANNUAL INCIDENCE OF 8.2 – 14.7 CASE** / 100000 POPULATION

**annegers et al.report of increasing incidence of diagnosis in women of child bearing age. Mayo clin proc

THOUGH INCIDENCE IS EQUAL, IT IS DIAGNOSED MORE COMMONLY IN FEMALES

THIRD MOST COMMON PRIMARY BRAINTUMOURS

AUTOPSY INCIDENCE: 20-25%* OF POPULATION

molitch et al . Incidental pituitary adenomas. Am J Med Sci.1993

10%* OF ROUTINE MRI SCANS SHOW OCCULT PITUITARY MICROADENOMA.

*molitch et al . Incidental pituitary adenomas. Am J Med Sci.1993

BETWEEN 3RD – 6TH DECADE OF LIFE

PITUITARY TUMOURS

GENETICS

MEN 1

3% OF ALL PITUITARY TUMOURS

AUTOSOMAL DOMINANT DISORDER

VARIABLE PENETRANCE

OCCCURS IN 25% OF AFFECTED PATIENTS with MEN 1

PRL OR GH MACROADENOMAS

PITUITARY TUMOURS

ADENOHYPOPHYSIS

PITUITARY ADENOMAS

NEUROHYPOPHYSIS

METASTATIC TUMOURS

PRIMARY : RARE -GLIOMA' S,GRANULAR CELL TUMOURS,HEMARTOMAS

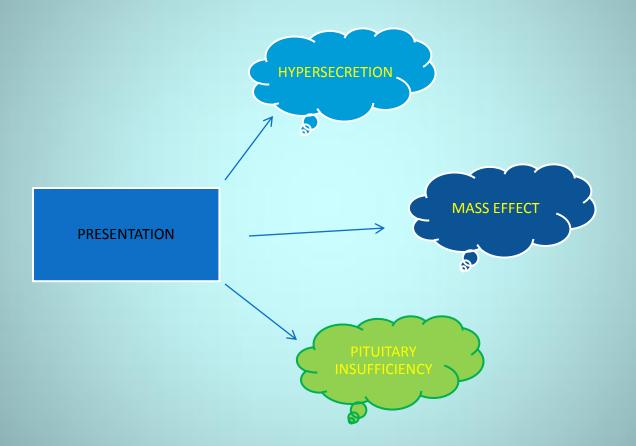
PITUITARY ADENOMAS

FUNCTIONING YOUNG ADULTS

NON FUNCTIONING WITH INCREASING AGE

Adenoma type*	Prevalence %
Prolactin cell adenoma	30
GH cell adenoma	15
ACTH cell adenoma	10
Gonadotroph adenoma	10
GH/PRL cell adenoma	7
TSH cell adenoma	1
Nonfunctioning adenoma	25
	kovcks et al .Tumours of pituitary gland.Atlas of tumour pathology .1986

PITUATARY ADENOMAS


GROSS :

YELLOWISH GREY TO PURPLE, SOFT FLUID TO CREAMY TEXTURE

HISTOLOGICAL:

- CELLULAR MONOMORPHISM
- LACK OF ACINAR ORGANIZATION
- UNIFORM CYTOPLASMIC STAINING, PLEOMORPHIC CELLS, PROMINENT NUCLEOLI, MITOTIC FIGURES.

PITUITARY ADENOMAS

HYPERSECRETION

70% OF PITUITARY ADENOMAS ARE ENDOCRINOLOGICALLY ACTIVE

MOST COMMON MODE OF PRESENTATION

PRESENTATION VARIES ACCORDING TO THE HORMONE IN EXCESS

PITUITARY INSUFFICIENCY

BY COMPRESSION OF NON TUMOUROUS PITUITARY, PITUITARY STALK, HYPOTHALAMUS.

CHRONIC PROCESS, CAN BE ACUTE AS IN PITUITARY APOPLEXY

GONADOTROPHS MOST VULNERABLE

MASS EFFECT

VISUAL LOSS

HYDROCEPHALUS

INTRACAVERNOUS EXTENSION

HARDY'S Classification

- Microadenomas Grades 0 and I
- Macroadenomas Grades II to IV
- Grade 0 : Intrapituitary microadenoma with
 normal sellar floor
- Grade I : Normal-sized sella with asymmetric floor
- Grade II : Enlarged sella with an intact floor
- Grade III : Localized erosion of sellar floor
- Grade IV : Diffuse destruction of floor

Modified Hardy Wilson Classification

Type A: Tumor bulges into the chiasmatic cistern

Type B: Tumor reaches the floor of the 3rd ventricle

Type C: Tumor is more voluminous with extension into the 3rd ventricle up to the foramen of Monro

Type D: Tumor extends into temporal or frontal fossa

TYPE E : Extradural spread (extension into or out of the cavenous sinus)

Pathologic Classification

Chromophobic – Non-functioning

> Basophilic – Cushing's

Acidophilic -Acromegaly

Mixed

WHO Classification

Five-tiered system

- Clinical presentation and secretory activity
- Size and invasiveness (e.g. Hardy)
- Histology (typical vs. atypical)
- Immunohistologic profile
- Ultrasturctural subtype

PITUITARY ADENOMAS

A. PROLACTINOMA

- Most common primary tumour of pituitary
- 30% of all pituitary adenoma
 Female : male = 20: 1 for microadenoma
 1:1 for macroadenoma
- Characterized by hyperprolactinemia
- Prolactin
 - < 25 ng/ ml normal
 - 25-150ng/ml prolactinoma, stalk effect, drugs, Hypothyroid
 - > 150ng/ml prolactinoma(pure or mixed)
 - > 1000 ng/ml invasive prolactinomas

Causes of Hyperprolactinemia

Medications

Psychotropic (e.g., haloperidol, resperidol)

Antidepressants (e.g., amoxapin)

Estrogen

Opiates

Calcium channel blocker (verapamil)

Antihypertensives (α methyldopa, reserpine)

Dopamine antagonists (domperidome, metoclopramide) Pituitary adenoma

Prolactin-secreting adenoma

GH-secreting adenoma

Secondary hyperprolactinemia, usually a macroadenoma Other pituitary lesion, e.g., metastatic, sarcoid, aneurysm Hypothalamic lesion

Head trauma

Pregnancy

Spinal cord lesions

Chest wall trauma

Nipple stimulation

PROLACTINOMAS

CLINICAL PRESENTATION

HYPOGONADISM

Menstrual irregularities like secondary amenorrhea, delayed menarche, oligomenorrhea, infertility.

Galactorrhea

Decreased libido

HEADCACHE

VISUAL DISTURBANCES

HYPOPITUITARISM

PSYCHOLOGICAL

PITUITARY ADENOMAS

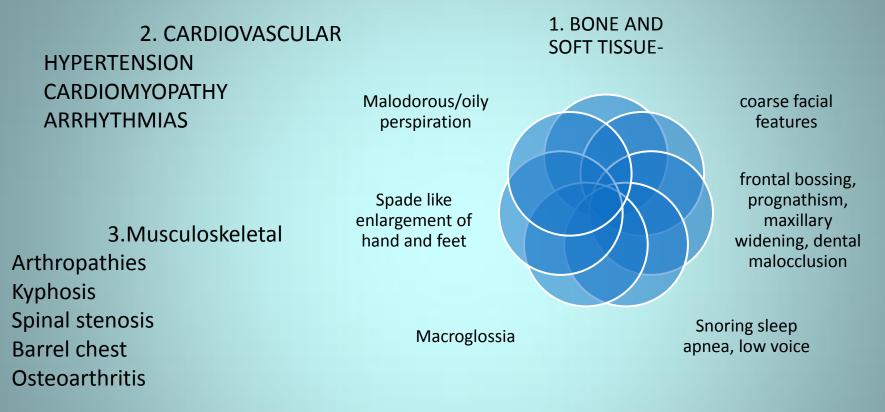
- B. GROWTH HORMONE SECRETING PITUITARY ADENOMAS
- **Growth hormone**
- Most abundant pituitary hormone
- Secretion is pulsatile
- Physiological excess seen in stress, trauma, sepsis, estrogen replacement
- Exerts it's action through IGF -1

GROWTH HORMONE SECRETING PITUITARY ADENOMAS

- Equal incidence in males and females
- more than 60% are macroadenomas
- 4th and 5th decade
- > 15% Of all pituitary tumors

plurihormonal

Overall mortality is increased 3 folds as compared to age matched controls


GROWTH HORMONE SECRETING PITUITARY ADENOMAS

• GH excess

Before epiphyseal closure - gigantism

Beyond puberty - acromegaly

DIVERSE MANISFESTATIONS

4. Increased incidence of premalignant polyps/ colonic cancers

5. Diabetes mellitus

DIAGNOSIS

- Random GH not useful gives false positive and false negative results
- Insulin like growth factor 1 (IGF-1) best for screening represents average daily GH secretion
- Insufficient GH suppression on oral glucose
 tolerance testing gold standard to confirm diagnosis :75 mg
 of glucose load normally suppresses GH< 2ng/ml RIA. GH nadir >2ng/ml
 RIA with adenoma confirms it

Pituitary adenomas

Cushing's disease

5 to 10 times more common in females than males

3rd and 4th decade

10-15% of all pituitary tumors

Highest morbidity of all pituitary hypersecretory disorders

Most common cause of death is cardiovascular complication

CUSHING'S DISEASE

Ch. Exposure of tissues to excessive cortisol

Moon facies

Centripetal obesity

Buffalo hump

Thin skin ,purple abdominal striae, ecchymosis

Psychological

Glucose intolerance

Hematopoietic features include leukocytosis, lymphopenia, eosinopenia

Osteoporosis, proximal myopathy,

Impaired immune function

Hirsutism, acne menstrual irregularities in females

Oligospermia, impotence in males

Diagnosis

Cushing 's syndrome

 \rightarrow

??secondary hypercortisolism (ectopic Cushing's syndrome)

???primary
hypercortisolism(adrenal
Cushing syndrome)

Diagnosis

24 hr urinary free cortisol(>100mcg)1 and 17 OHcorticosteroids(>12mg)

1 mg overnight dexamethasone test- best screening test

Low dose dexamethasone suppression test

High dose dexamethasone suppression

Plasma ACTH levels

Inferior petrosal sinus sampling

INVESTIGATION PROTOCOL

- History and physical examination
- Neuro- ophthalmology: Acuity, field, fundus and movements
- Hormone levels basal hormone and dynamic testing
 Aim- hypersecretory state/insufficiency
- Radiology (a) X-Rays
 (b) MRI
 (c) NCCT/C
 - (c) NCCT/CECT(d)PET/DSA
- Routine blood investigation

OPTIC NERVE consists of 1.5 million fibres.

Total length is 5 cm of which 12-16 mm is intracranial.

Both optic nerves after coming out of optic canal rise by 45 degrees and meet to form optic chiasm

OPTIC CHIASM can bePrefixed15%Normal70%Post fixed15%

With in the chiasm PMB lies in the middle Temporal hemi retinal fibers pass ipsilateraly Nasal hemi retinal fibers decussate

- **Optic chiasm decussation**
- Inferior nasal fibers anteroinferior
- Superior nasal fibers posterosuperior
- PMB

 in the middle primarily postero superiorly

Enlarging pituitary adenoma may compress

- Optic chiasm
- Optic nerve in patients with postfixed chiasm
- Optic tracts in patients with prefixed chiasm
- 3rd, 4th, 6th nerves with cavernous sinus extension causing diplopia
- Diplopia evaluation:: 3 principles
 - abnormal image is always peripheral
 - is always from the paretic eye
 - distance between the image increases on looking in the direction of paretic muscle
- Third ventricle leading to hydrocephalus

- Visual evaluation in a case of pituitary adenoma includes examination of:
- Visual acuity
- Colour vision
- Visual fields
- Opthalmoscopy
- Pupils
- Extraocular movements

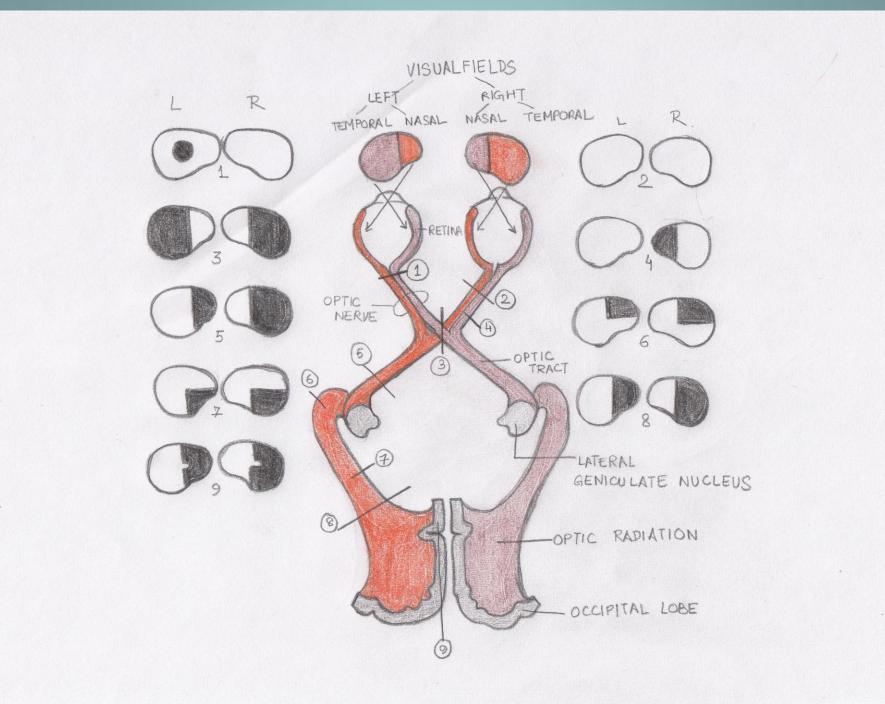
VISUAL ACUITY Eye's ability to resolve details

- Neurosurgically , patient's best corrected visual acuity is pertinent
- Distant vision by Snellen's chart placed at 6 m where accommodation is relaxed and light rays are parallel
- Near vision by rosenbaum's pocket chart held at a distance of 14 inches

COLOUR VISION

Loss of colour vision precedes other visual deficits

In neurosurgical disease, red perception is lost first described as red desaturation or red wash outs


Ishihara/hardy ritter rand charts used

Visual fields

90 -100 deg	temporally
60 deg	nasally
50-60 deg	superiorly
60-75 deg	inferiorly

With binocular vision, VF of both eyes overlap

Visual fields are analyzed by Confrontation method Goldman's perimeter Humphrey's field analyzer

Pituitary adenoma can cause primary optic atrophy

	primary	secondary
Colour of disc	white	grey
Border of disc	Sharp	Blurred
Arteries and veins	Normal or reduced	Arteries thin, veins dilated
Distribution	May affect one sector	Entire disc affected
Causes	Optic nerve/retinal damage	Papillitis/papilledema
Lamina cribrosa	visible	Not visible

VEP

Evoked electro physiological potential that can be extracted using signal averages from EEG activity recorded at the scalp.

Provides diagnostic information regarding the functional integrity of visual system.

Measures the time taken for visual stimuli to travel from eye to occipital cortex.

Particularly useful in infants

Radiology

- X- Rays:
- Requires proper alignment of posterior clinoid processes
 - widening of sella
 - destruction of sellar floor
 - relation of median sphenoidal septum aeration of sphenoid sinus

CT HEAD

CT HEAD is especially useful for:

- Evaluating bony structures adjacent to adenoma
- Detecting calcifications in association with macro adenoma

CT HEAD

 NCCT+ CECT head/ sella with thin coronal cuts: Neck hyper extended(Reduces dental artifacts) 1.5 -2.0 mm cuts from tuberculum to dorsum sella

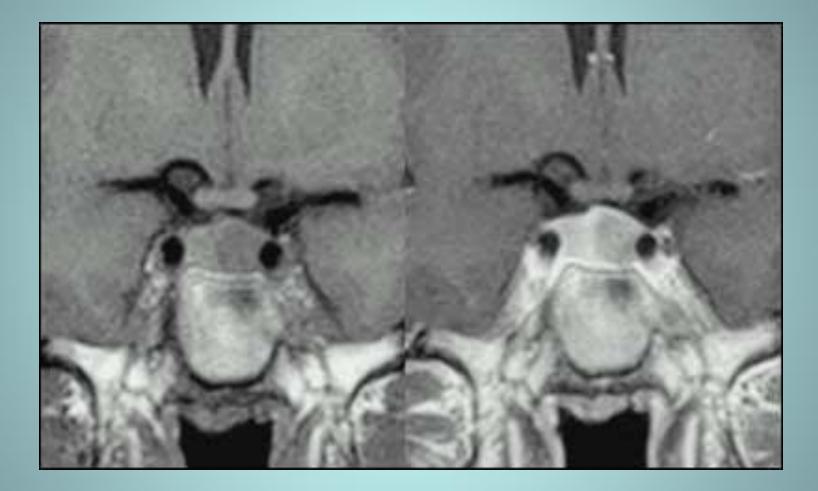
MICROADENOMAS Focal hypo intensity Increased vertical height Asymmetrical convexity of superior surface

MACROADENOMAS

Isodense or heterogenous with mixed iso and hypo areas intense contrast enhancement

- Better visualization of optic apparatus/carotids
- Multiplanar display
- Coronal images
- Examining asymmetries
- Minimal volume artifacts
- Sagittal images
- Orientation of pituitary in relation to sphenoid sinus
- Axial images
- Useful in lesions with parasellar extension
- Sensitivity for pituitary adenomas 90% Sensitivity post contrast 95%

- Routine 1-2 T MRI produce 2-3 mm slices
- Newer techniques : reduce false negatives and can reduce acquisition time
- I. Volume imaging techniques(3 –D Fourier transform)
- II. Fast spin echo


T1W

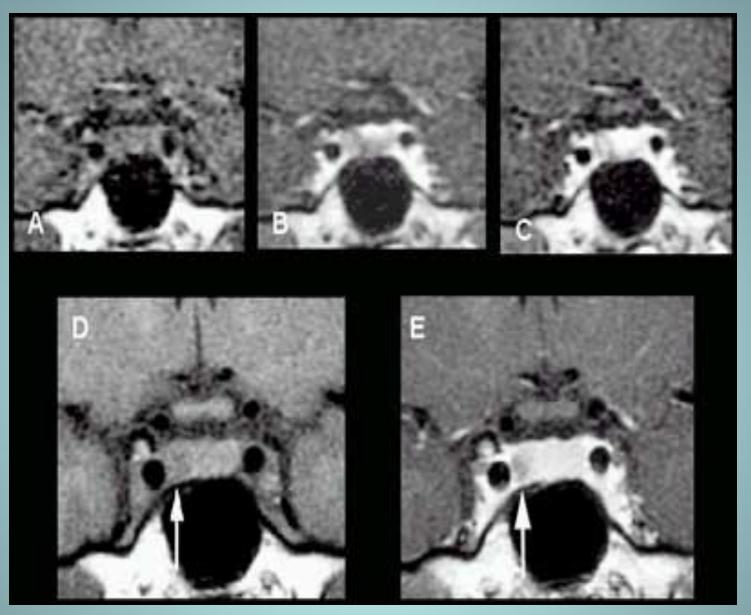
- more sensitive
- Better anatomical details of extra axial structures
- Obtained in shorter time period
 Normal anterior lobe is intermediate grey
 Posterior lobe is bright
- Paramagnetic contrast agents further improve delineation

Microadenoma

Seen as area of focal hypo intensity Usually well defined , laterally situated Focal convexity upward Displacement of stalk to opposite side

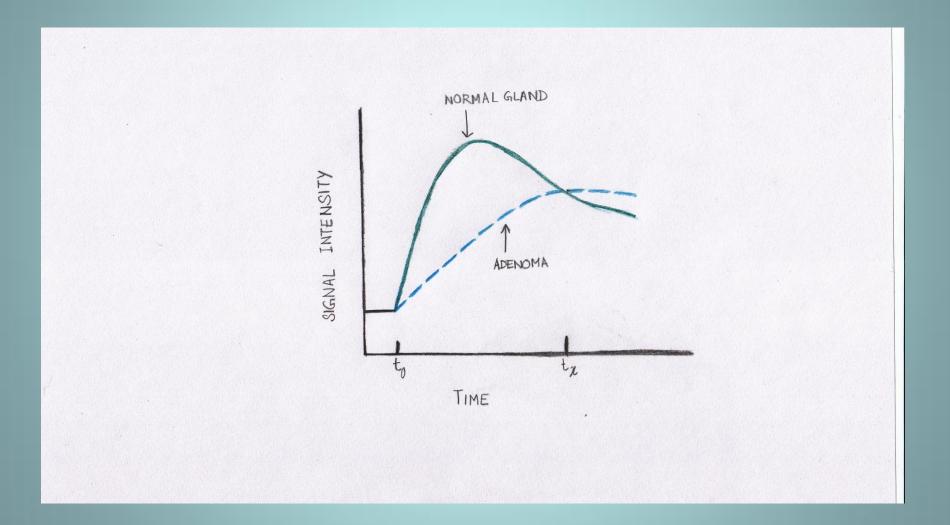
Relative hypo intensity on immediate post contrast sequences

PITUITARY ADENOMA – RELATIVELY HYPOINTENSE


- Dynamic imaging
- Consists of a series of images at the same location to detect temporal changes in the signal intensity
- Sequential coronal images at 20- 30 sec intervals following contrast injection
- Slow uptake and slow wash out of contrast by pituitary adenomas
- *Avg time of enhancement onset in normal pituitary Avg time of enhancement peak in normal pituitary Avg time of enhancement onset in pituitary adenoma Avg time of enhancement peak in pituitary adenoma

110sec 188sec

43sec

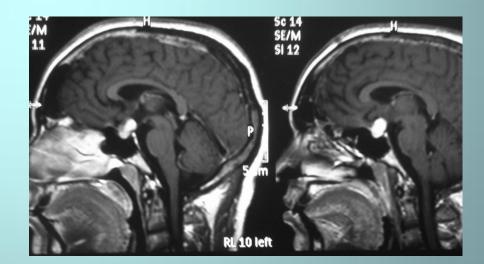

112 sec

Indrajit et al:value of dynamic mri in imaging of pituitary adenomas; indian journal of radiology and imaging: 2001

DYNAMIC SCAN SHOWING DELAYED CONTRAST UPTAKE BY ADENOMA

Dynamic MRI

Macroadenoma

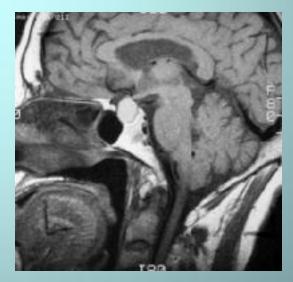

- Soft tissue sellar mass of intermediate signal intensity on T1W images
- Hyperintense on T2W
- Enhancing diffusely on contrast
- Superior spread most common
 (Grows through diaphragma sellae figure of 8 image)

DIFFERENTIALS

- CRANIOPHARYNGIOMA
- RATHKE'S CLEFT CYST
- MENINGIOMAS ARISING FROM TUBERCULUM SELLA, PLANUM SPHENOIDALE, ANTERIOR CLINOID, POSTERIOR CLINOID, MEDIAL SPHENOID WING
- ANEURYSMS OF CAVERNOUS/SUPRACLINOID ICA, RARELY BASILAR TOP
- EMPTY SELLA TURCICA
- CHORDOMAS
- DERMOIDS/EPIDERMOIDS
- METASTASIS ESPECIALLY IN SKULL BASE

CRANIOPHYRNGIOMAS

SUPRASELLAR LOCATION ON CT-HETEROGENOUS DENSITY MASSES WITH AREAS OF CYST FORMATION AND CALCIFICATION SOLID TISSUE IS CONTRAST ENHANCING R 140383 700-402012 30-402012 19-50-5 SP-96-3 R GT-250


ON MRI VARIABLE SIGNAL INTENSITY LESIONS CYSTS ARE USING HIGH SIGNAL

GERMINOMAS

SEEN USUALLY IN CHILDREN (PINEAL REGION) WHEN SUPRASELLAR MIDLINE IN LOCATION , BEHIND INFUNDIBULUM HYPO ON T1W, HYPER ON T2W, CONTRAST ENHANCING

RATHKE' CLEFT CYST

ANTERIOR HALF OF SELLA TURCICA IN FRONT OF PITUITARY STALK

PITFALLS

False negatives

- Especially with Cushing's disease in conventional spin echo MRI
- Pneumatized anterior clinoid process

False positives Small pars intermedia cysts Clinically silent infarcts Foci of necrosis

ROLE OF PET IN PITUITARY ADENOMA

• Primarily for monitoring treatment

11-C- methionine and 18 – FDG for metabolic mapping.

• Highest metabolic rate with prolactinoma followed by growth hormone tumors.